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A series of experiments designed to measure the wave resistance of an accelerating 
two-dimensional air-cushion vehicle is described. A model was towed at a 
constant acceleration from rest over water of various depths. In  addition, the 
effects of different levels of acceleration and different cushion pressures were 
examined. The results are compared with linearized potential-flow theory and 
show particularly encouraging agreement. The predicted humps and hollows in 
the curve of wave resistance ws. time are verified, but with a small shift with 
respect to time. Also, the theoretical region of negative wave resistance in water 
of finite depth is demonstrated. 

1. Introduction 
One of the problems in the design of an air-cushion vehicle (ACV) is the 

requirements to overcome the drag at the hump speed. The drag is generally 
considered to consist of the following components : the aerodynamic profile 
drag on the craft, which is approximately proportional to the square of the 
speed, the momentum drag due to the ingestion of cushion air from the sur- 
rounding atmosphere into the moving vehicle, which is proportional to the craft 
speed, the wave drag, and the other interactive effects, including water contact 
and spray. 

The wave-drag component is found to exhibit a main peak (or hump) at a 
Froude number which depends on the water depth and craft planform shape. 
In  some cases, those of relatively high cushion pressure, it  is this hump which 
imposes the minimum requirement on the engine power, since the wave drag 
(and thus the total drag) drops beyond this speed before finally rising again. 

The wave resistance of an air-cushion vehicle can be studied by assuming 
its action to be hydrodynamically equivalent to that of a pressure distribution 
acting on the free surface of the water. Naturally, this idealization neglects 
physical contact between the skirt of the craft and the water, and it does not 
allow the existence of any spray. 

For example, Havelock (1932) derived the wave-resistance expression for a 
general pressure distribution travelling at a constant speed. This theoretical 
work was later extended by Lunde (1951) to include the effect of water of finite 
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depth. Barratt (1 965) presented numerical results for a pressure distribution 
of constant intensity acting on a rectangular or elliptical area. The most striking 
feature of his results is the series of humps and hollows in the wave-resistance 
c w e ,  the main hump occurring in deep water at a Froude number of approxi- 
mately 0.56. The humps are shifted to a lower Froude number in water of re- 
stricted depth. In  sufficiently shallow water, the main hump occurs at  a depth 
Froude number of unity. 

The work of Newman & Poole (1962) included the effect of transversely re- 
stricted water. Oscillations in the wave-resistance curve were displayed as well 
as the interference due to the sides of the channel. 

The humps and hollows are physically due to the production of waves, 
principally by the forward and aft ends of the pressure distribution. These 
waves have a large component transverse to the direction of motion and may 
therefore combine or cancel each other at the stern. This depends on the speed 
of advance of the ACV. When the waves combine, the elevation of the water 
near the stern is low, so that the craft trims positively, and the wave resistance 
makes its presence felt on the craft through this mechanism. 

The above-mentioned publications all represent an application of potential- 
flow theory with linearized free-surface conditions. The theory predicts an infinite 
number of oscillations from the main hump down to zero speed. 

To examine this phenomenon, experiments on models have been made by 
Everest (1966a, b )  and Hogben (1966). One of the main difficulties indicated 
was the separation of the wave-drag component from the measured total drag. 
The aerodynamic drag on the model and the momentum drag were estimated 
and subtracted from the total. The remainder was considered to be the wave 
drag and compared with the theory. No account of water contact was attempted, 
although Everest (1966a) experimented with a thin polythene sheet floating on 
the water, designed to eliminate spray. No doubt tension within this sheet would 
be a source of error. 

The general agreement appeared to be quite good with regard to the overall 
range of values of the wave resistance. Large scatter in the data was evident, 
being due to the spray and water contact. The main hump and the secondary 
one were displayed, and were out of phase with the theoretical values by up to 
0.05 on the Froude-number scale. The absence of the other humps was attri- 
buted to nonlinearity by Hogben (1965). 

Further experiments were performed by Everest & Willis (1958) and Everest 
& Hogben (1966, 1967, 1969). Here the wave resistance was measured directly 
by an analysis of the wave pattern. Such techniques, using wave-elevation 
probes, were described by Eggers, Sharma & Ward (1967). This method pro- 
duced far less scatter in the data. 

Turning now to the problem of unsteady motion, some experiments were 
carried out on models in water of finite depth by Everest & Hogben (1967). 
Acceleration levels of 0.0014 g and 0-0022 g were maintained in water of depth 
0.215 of the craft length. In  the former case the hump drag was reduced (the 
reduction in wave drag was in fact greater because the inertia of the model must 
also be considered). In  the second case the measured drag was greater owing to 
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substantial water contact. The practical implication of this is that the critical 
hump-drag condition might be alleviated by a suitable choice of acceleration. 

The wave resistance of an ACV starting from rest has been computed from the 
theoretical point of view by Doctors & Sharma (1972). Acceleration had the 
effect of reducing the higher-order oscillations and shifting them to a larger 
Proude number. It was also shown that, by using a pressure distribution with 
smoothing at the forward and aft edges, the low-speed oscillations could be 
eliminated. However, somewhat unrealistically large amounts of smoothing 
were required to eliminate all but the main two humps in order to tally with 
steady-state experiments. Thus nonlinearity and viscosity were confirmed as 
being important features at  low speed. Another result predicted was that a 
two-dimensional pressure band experiences negative resistance during part of 
the accelerated motion. 

The theory was extended by Doctors (1972) to include the effect of side as 
well as end tank walls for unsteady motion in a restricted area. The effects of 
wall reflexions were depicted there. Some applications of the unsteady wave- 
resistance calculations were given by Doctors & Sharma (1973) and illustrated 
by an ACV accelerating up to its cruising speed. 

The aim of the present work is to test the theory for unsteady motion, since 
experimental work on ACV’s to date has been restricted to steady motion. It is 
felt that agreement between theory and experiment should be better in the 
unsteady case, since strong interference effects and large wave slopes will not 
have time to be generated. 

2. Experimental equipment 
The general arrangement of the equipment is shown in figure 1. The tank was 

20 ft long and 2 ft wide and could be filled to a depth of 1 ft. The construction 
consisted basically of a steel-angle framework. The frames were fitted with 
wooden spacing strips onto which the plywood lining was attached. This method 
allowed accurate fixing of the internal tank dimensions as well as its levelling. 

Although the carriage rails were laid (also on spacers) to within a height 
accuracy of 0.02 in., to allow smooth motion of the carriage, the two wheels on 
one side were mounted on a separate section which pivoted about its centre on 
the rest of the carriage frame. Thus aIl four wheels continuously remained in 
contact with the track throughout the motion. 

The drive system was designed around a falling-weight concept. Hence the 
basic type of acceleration pattern, namely a constant one, could easily be studied. 
A series of equally spaced electrical contacts along one side of the channel and 
a wiper on the carriage were connected to an event marker on an ultra-violet 
recorder. In  this way, the constancy of the acceleration was verified. The acce- 
leration throughout a run had a maximum deviation of 0.5% from the mean 
value for that run. This indicated the minor influence of hydrodynamic and 
aerodynamic drag on the motion of the model, as well as frictional variations in 
the cables, etc. (The inertia of the moving parts of the system was designed to 
be relatively high in order to produce this result.) It was also found that the 
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FIGURE 1. Schematic layout of tank, carriage end cable system. 

weights could be selected to give a required acceleration level usually to within 
1 % but occasionally with a 2 yo error. 

The continuous cable, passing around a total of eight pulleys, was tensioned 
by a weight, as shown in figure 1. One of the pulleys was combined with a brake 
drum. A pair of diametrically opposed brake shoes were pulled together by a 
tension spring, but kept off the drum surface by a caliper. The carriage, on 
reaching the end of its run, would throw the brake lever mounted at the side of 
the tank, which released the caliper, allowing the shoes to bear against the drum 
and thus bring the carriage to a halt. A release lever designed to impart a clean 
start to the carriage motion was also fitted. 

The ACV model is shown in figure 2. For the sake of simplicity, and because 
of the resulting reduction in the data analysis, a two-dimensional model spanning 
the channel was built as a first stage of the project. On the other hand, the tank 
had to be sufficiently wide to minimize side-wall interference (see Doctors 1972) 
for a three-dimensional model, yet to be built. A third advantage was that the 
basic phenomena of ACV wave interference are more strongly displayed in two 
dimensions. 

The radial-flow fan was driven by a 0-5 h.p. shunt-wound d.c. electric motor 
with a nominal speed of 2850 r.p.m. when supplied with 240 V. The model was 
fitted with an entry bell mouth and a set of vanes to ensure a uniform distribu- 
tion of air to the fore and aft nozzles. Finally, in order to facilitate the adjustment 
of the height of the model above the water surface, a set of four replaceable 
spacers was used to attach it to the carriage frame. 

It was decided to measure the wave resistance directly, by analysis of the 
free-surface elevation. As mentioned previously, this method minimized the 
degree of scatter in the experimental results for steady motion. Thus the idea 
of measuring the variation in the towing-cable tension was considered impractical 
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1 Side elevation Solit olan view 
~~ 

FIGURE 2. General arrangement of ACV model. Dimensions in inches. 

owing to the difficulty of accurately estimating the other drag components to 
be subtracted from it. The probe itself consisted of a pair of stainless-steel 
needles 0.034 in. in diameter and separated by 0.40 in. These were electrically 
insulated from each other and were attached to an extension arm to allow 
probing under the model. The determination of the wave elevation was based 
on the variation of the electrical conductance between the probe needles with 
the depth of immersion. Calibration was achieved by raising and lowering the 
needles via a screw-drive system within the probe unit. The wave elevation at  
different longitudinal positions relative to the model was obtained by shifting 
the probe unit on a pair of shafts. 

The needles were connected electrically such that the resistance of the water 
between them was in parallel with one of the four arms of a Wheatstone bridge. 
Each arm had a resistance of 560 Q, and the bridge was supplied by a 3000 Hz 
signal of 5 V. The resulting bridge imbalance, due to variations in wave height, 
was amplified and rectified. The signal was then used to drive an ultra-violet 
galvanometer with a natural frequency of 450 Hz, this being considerably higher 
than the component frequencies of the wave system. 

3. Experimental analysis 
The wave resistance may be defined directly as the longitudinal component 

of the cushion pressure force acting on the water surface. This might be more 
accurately referred to as the pressure resistance and for an inviscid fluid is equal 
to the rate at which the mechanical energy in the waves is increased divided by 
the craft speed, if the ACV is travelling at  a constant speed. In  a real situation 
there is, of course, some dissipation of that energy into heat. For an unsteady 
situation, an additional component of work due to the pressure acting against 
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the vertical motion of the surface exists. This second term was computed by 
Doctors & Sharma (1972). The resistance per unit width of the two-dimensional 
model is therefore 

where the cushion pressure p varies with the longitudinal distance x, measured 
forward of the model centre. The wave elevation above the undisturbed level 
is 6. 

Wave profiles were taken at  different values of x symmetrically placed fore 
and aft of the model centre. It is only necessary t o  take profiles in the region 
where p varies, namely, near the ends. 

This point may be demonstrated by carrying out a partial integration of (l), 
which yields 

R = [p(x)  (I(x)];" - jrn C g d x .  
-m  

The first term is zero. It is seen that, in the central region where p is constant, 
there is no contribution to the integral, and no profiles need to be taken there. 
The problem of numerical differentiation of 6 is also avoided, since p is a rela- 
tively smooth function of x. This equation was numerically approximated as 

where n points were used at each end. On the other hand, if one assumes that the 
pressure is essentially constant at  po  and then drops suddenly to zero at the 
ends, then a first approximation to the wave resistance would be 

= PO[CW - 6( - 41. (3) 

This formula (with n = 1) makes use of only one wave profile at  each 'effective' 
end, namely at x = f a. 

The calibration of the probe showed that the trace deflexion on the recorder 
was not precisely linear. This was undoubtedly due mainly to some basic non- 
linearity in the relation between the conductance of the probe and the depth of 
immersion, as well as to the way the probe was connected into the Wheatstone 
bridge. A linear approximation would have resulted in a maximum error of 
about 15 % a t  the greatest deflexion encountered. Consequently the computer 
program was arranged to fit a parabola to the curve of trace deflexion vs. wave 
height. This matched the calibration curve with a measured worst error of 34% 
for all runs. 

Twenty minutes settling time between runs was allowed. This was followed by 
a zero reading. The fan motor was then switched on and its speed adjusted to 
give the required cushion pressure, measured by means of tappings in the model 
base. A further 10 min were allowed for this change to settle, before initiating 
the run. The waiting period of 20 min was determined from the time required 
for the wave motion from the previous run to die out. The wave-height record- 
ings were then found to be repeatable with the exception, naturally, of the 
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ripples which were caused by the turbulence in cushion air delivered by the fan. 
Of course, the theory does not account for this since it assumes a time-independent 
pressure acting on the water. One of the motivating factors behind the experi- 
ment was to see if this was an important feature. 

A calibation was performed before, as well as after, a complete set of up to 
18 runs (i.e. n = 9). The actual calibration curve used in the analysis of a parti- 
cular run was obtained by a linear timewise interpolation between the two curves, 
which tended to differ by no more than 3% over a 9 h period. The response 
from the probe and electronics always tended in the same direction with increas- 
ing time and was more sensitive at  the end of this period. 

The tracks were surveyed by siting the probe at the two ends of the carriage 
and moving the carriage slowly over settled water. Thus the pitch angle 8 of the 
carriage and model was found as a function of position along the track. The 
correction AR = EW, (4)  

W being the weight supported by the pressure, was then made by adding this 
to (2) and (3). 

4. Theoretical analysis 
Under the assumption of potential flow and linearized free-surface conditions, 

the theoretical wave resistance per unit width (Doctors & Sharma 1972) may be 
written as 

dw w2[P2 + Q2] cos [(gw tanh (wd))* ( t  - T)] cos [w{s(t) -s (7 ) } ] ,  

with P + iQ = J p ( r )  exp (iwx) dx. 

Here p is the water density, g is the acceleration due to gravity, d is the water 
depth, s is the distance travelled by the craft, and c is the instantaneous velocity 
at time t after the start of the motion. 

The theory assumes that the pressure has been acting for all t < 0 and that the 
water is at rest at time t = 0, and thus corresponds to the experimental proce- 
dure of allowing the fan to run for some time before starting each run. 

We may approximate the pressure distribution curvep(x) by a series of straight 
lines. If, in addition, the distribution is symmetrical fore and aft, then (6) 
becomes 

- - l 
r -Pf -1 )  (cos (wxJ - cos (w2i-l)} 

W W i = l  X$--XZ-1 

Q = 0, 
where po is measured at x = x, = 0. 

by the author previously, namely 
We shall also test the idea of the equivalent pressure distribution suggested 

p = &po[tanh{a(x+a)}-tanh{ol(x-o)}], (8) 



520 L. J .  Doctors 

where a is the pressure fall-off parameter and a is the effective half-length of the 
distribution, so that the weight supported by the pressure per unit width is 
given by 

In this case, it was shown that (6) gives 

w = 2poa. (9) 

P = porsin (aw)/asinh(nw/Za). (10) 

In  order to make (8) equivalent to the actual pressure distribution, values 
of p,, a and a must be found. We take the nominal pressure po to be the essen- 
tially constant value over the central region of the cushion. The nominal half- 
length is given by a and is found by balancing the weight via (9). This leaves 
one degree of freedom, namely the choice of the amount of ' spread ' of the cushion 
beyond the nominal length. The value A W of this lift supported beyond x = 5 a 
may be related to the pressure fall-off parameter a in the following way: 

= p,~~[tanh{a(r+a))-tanh{a(x-a)]]dx 

= p0[2aa -In Gosh (2aa)]/ol 
+ po (In 2)/a for ola > 2. 

Thus aa = 0.3466 WlA W. 

5. Results 
The pressure distribution generated on a groundboard by the model is shown 

in figure 3. The pressure was measured by means of static tappings in a hori- 
zontal board set at three different heights relative to the model base. This situa- 
tion is a simplification of that existing under the craft while under way. Ideally 
one should construct a number of groundboards with the same wavy shapes as 
the water surface a t  various instants of time, The pressure distribution on these 
boards could then be fed into a modified theory allowing for a pressure varying 
with time. Even this procedure would assume that the cushion-pressure distri- 
bution varies quasi-steadily with time, and it neglects spray generation. The 
complication of using a non-horizontal groundboard may be gauged by referring 
to the pressure distributions measured by Hogben (1966) on a tilted groundboard 
under a circular-platform model. The pressure is seen to be essentially constant 
for x < 3 in. but the details of the fall-off at the edge depend on the height h of 
the model above the ground. For the intermediate and largest height there is 
an initial rise in pressure, that is p/po > 1, owing to the interaction of the air jet 
with the ground. The effective length [given by (9)] is seen to increase slightly 
with height. In  addition, the sharpness of the distribution, given by (ll), in- 
creases. Also shown is (8) for the case h = 1.41 in., the clearance for all the 
experiments. 

A typical set of wave profiles is displayed in figure 4. The effective length a 
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FIUURE 4. Set of experimental wave profles. dla = 0.5, 61s = 0.05, p&qa = 0.02, 
A = 1.41 in. (The points on the Froude-number soale indicate the positions of the steady- 
state humps.) 
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FIGURE 5 .  Effect of number of wave profiles used in wave-resistance integration. Conditions 

as in figure 4. (The point on the Froude-number scale indicates the steady-state hump.) 

was used to non-dimensionalize the time t and distance s. In  the region near the 
forward end of the craft (runs 130-138) there is generally a positive wave gene- 
rated, which then dies out at a sufficiently high speed. The depression of the 
water at  t = 0 should, of course, correspond to the pressure in figure 3. This is 
not always precisely the case, as, for example, in run 127, where it is too large. 
This is presumably due to unsteadiness of the water surface. (The curves have 
been smoothed in figure 4; the original records, which show the ripples generated 
by the fan air, are shown for runs 125 and 134 only.) Furthermore, the pressure 
distribution over water will be different from that over the groundboard, 
owing to the water surface’s deflexion. 

Wave profiles near the aft end (runs 121-129) illustrate the more complicated 
waves generated there. There is a general shift of the hump to an earlier time for 
profiles further ahead, as one might expect. 

Figure 5 displays the wave-resistance coefficient, defined by 

as a function of time. The experimental curves were obtained by analysis of 
differing numbers of the profiles in figure 4. Thus n = 1 corresponds to the use 
of runs 125 and 134 (i.e. values a t  the effective ends of the cushion) only, by 
means of (3). The case of n = 2 used runs 121, 129, 130 and 138. That of n = 3 
used those for n = 2 as well as the two for n = 1, and so on. Comparison is also 
made with the theory. The experimental wave profiles for an acceleration of 
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FIGURE 6. Test of linearity of the theory. dla = 0.5, 5/g = 0-05, n = 9, h = 1.41 in. An 
asterisk indicates the theory using the equivalent pressure distribution with ua = 11.88. 
(The point on the Froude-number scale indicates the position of the steady-state hump.) 

E/g = 0.05 (shown here and later) and those for C/g = 0-1 and 0.15 (in later 
figures) were digitized with 78, 52 and 69 points, respectively. In  all cases the 
theoretical wave resistance, given by (5), was computed using 257 points in the 
time integral. The wavenumber integral was truncated at  wa = 40, and was 
performed using 382, 319 and 215 points for the three levels of acceleration 
respectively. The pressure distribution in (7) was represented by 22 points. 
(These computing parameters give an estimated error of less than 0.001 in R,.) 

The experimental curves are all very close to one another in the main-hump 
region and above it, corresponding to t(g/a)* > 16. 'l'he theory in this region 
compares well and the predicted negative wave resistance referred to in the 
introduction is also verified. At the lower speeds, the differences are greater 
owing partly to shifting in the phasing of the oscillations. Surprisingly, the 
curve for n = 1 is somewhat better than those for n = 2 or 3 in this region. 

The linearity of the theory is illustrated in figure 6, where different pressure 
levels are tested. To a certain extent the forms of these curves are similar, 
particularly in the hump region. However, the peak resistance, for example, 
increases faster than the square of the pressure predicted by the h e a r  theory. 
In  fact, a t  the hump, R, K pt44 approximately, so that R oc p:^. However, it 
must be pointed out that the experimental analysis used the pressure distribu- 
tion measured at rest over the groundboard. This will be increasingly distorted 
as the pressure is raised. 

The theory using the equivalent pressure distribution (8) is also shown, and 
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FIUURES 7 (a, b ) .  For legend see facing page. 
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FIGURE 7. Comparison of experiment (thin curves) with theory (thick curves).po/pga = 0.02, 
h = 1.41 in., n = 5 (exoept for 6/g = 0.05 in (b), for which n = 9). (a) d/a = 1.0. (b )  
d/a = 0.5. (c) d/a = 0.25. (The points on the Froude-number scales indicate the positions 
of the steady-state humps.) 

is seen to differ little from the theory using the actual distribution, except in 
part of the low-speed range. 

Finally, figures 7(a), (b )  and (c) compare the theory for the resistance with 
experiments for three depths, respectively. Each figure depicts results for three 
levels of acceleration. The agreement is generally a little better for the higher 
accelerations, with regard to the phase of the oscillations. Furthermore the 
agreement improves as the depth is increased. This is not surprising, since the 
large wave amplitudes will have more time to grow and the resulting nonlineari- 
ties are expected to be accentuated as the steady state is approached. It is 
gratifying, further, to note that the correct number of humps and hollows is 
essentially predicted for all cases in figure 7. This is in contrast to steady-state 
experiments cited earlier. 

6. Concluding remarks 
The experiments are generally encouraging, mainly with regard to the con- 

firmation of the general form of the theoretical curves of wave resistance. The 
principal feature of the theory which is not precisely confirmed by the experi- 
ments is that of linearity; the wave resistance in the region of the main hump 
and hollow increases somewhat faster than the predicted square of the nominal 
cushion pressure. 
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The nonlinearity depicted in figure 6 is, in fact, worse than was anticipated, 
and may be due to the method of analysis. The pressure, being taken as that over 
the groundboard, is only correct for low values, and hence implies an a priori 
assumption of linearity [although (1) makes no such assumption]. The problem 
of water deflexion at rest was discussed by Hogben (1967). It might be pointed 
out that all current techniques for analysing wave patterns, described, for 
example, by Eggers et al., also implicitly assume linearity, as well as vanishing 
viscosity. It had been thought that the results in figure 6 would be improved 
as po/pga -+ 0, but presumably other effects must be playing an important role. 

For example, at the main hump, when t(g/a)* = 17, for p,,/pga = 0.005 (see 
figure 6) the stagnation pressure of the incident air is 0.086 of the cushion pres- 
sure. If one assumes that this effect would depress the water surface in the bow 
region of the model, on hydrostatic considerations alone, then it would amount to 
a reduction in R, of 0.043. However, this could only be a partial explanation of 
the 1.14 discrepancy in R, at this value of the pressure. 

A second factor which might be important at low cushion pressures is surface 
tension, which would alter the probe readings. 

The general rise in the measured hump resistance coefficient with pressure 
could be explained by cross-flow within the cushi0n.t The mean longitudinal 
water slope is theoretically proportional to p,. As a result of this water-surface 
distortion, there will be a general flow of air aft from the forward nozzle. Thus 
there will be, in essence, a two-dimensional expansion duct, the expansion ratio 
of which is proportional to po. The resulting Bernoulli effect will increase the 
pressure at  the stern relative to that at  the bow and cause an increase in the 
measured wave resistance. If one took this modijication to the original pressure 
to be proportional to p,, and to be of second order, then the wave-resistance 
coefficient at, say, the hump speed would be given by 

R, = A +Bp,. 

This linear trend is seen to be not unrealistic in figure 6. (It is pointed out that 
the power-law variation of R, with respect to p,, previously referred to is simply 
a curve fit and has no particular physical significance.) 

Another point to be considered is the disturbance caused by the probe, which 
alters its electrical output. If this is the same for points fore and aft of the 
model, then it can be shown that this effect precisely cancels out in (2) .  However, 
the probe disturbance will not be entirely the same, since its velocity through 
the water depends on the water motion as well as the carriage motion. Possibly 
the effect is dependent on the value of po/pga when viscosity and surface tension 
are also considered. Incidentally, some thought was given to using a stationary 
wave-height probe. Apart from the additional complication of the analysis of 
the recordings associated with it, the stationary probe would be a t  least as prone 
to surface-tension distortion effects at low pressures. 

Regarding future work, the next stage is to test a three-dimensional model. 
It is suggested that the agreement with theory will be better since the wave 
interference effects will be reduced in this case. If the current method of wave 

t The author is grateful to one of the referees of the paper for suggesting this discussion. 
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analysis is used, then wave profiles will have to be taken at different transverse 
positions, as well as longitudinal ones, greatly increasing the experimental effort. 

The writer wishes to express his deep gratitude to Mr R. B. Frost of the Hy- 
draulics Laboratory for considerable assistance with the design of the equipment. 
He is also grateful to Mr B. C. Motson of the Aerodynamics Laboratory for his 
help, and would like to acknowledge the financial support of the Australian 
Research Grants Committee. 
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